DETERMINING INCLUSIONS FOR THE MAXWELL’S
EQUATIONS

1. ENCLOSING OBSTACLE

1.1. Direct Problems and CGO-solutions. Let {2 be a bounded domain in
R? with a C%!-boundary and a connected complement R? \ Q. Assume D C (2
is the obstacle or cavity. The electric permittivity g, conductivity o¢ and mag-
netic permeability pg have the following properties: there are positive constants
Ems EMy Ums fbas and oy such that for all z € Q

em < eo(z) <enr, pm < po(x) <em, 0<op(x) <om

and g — ¢, 00, o — fhe € C’g(Q) for positive constants . and .

Considering the boundary value problem of Maxwell’s equations

VAE =iwuH, VAH = —iwypE in Q\ D, L1
V/\E:fGTH]B/izV(@Q) on 01, (L.1)

where 70 = g + 72, and zero tangential magnetic field condition on 9D
(v ANH)lop = 0, (1.2)

here v is the unit outer normal vector on dD. Through this note, we assume the
non-dissipative case g = 0. Then (1.1) degenerates to

VA (ug*VAE) =w?sE inQ\D. (1.3)

Notations. If F is a function space on 9f, the subspace of all those f € F3
which are tangent to 92 (orthogonal to the exterior unit normal vector field of
09Q) is denoted by TF. For example, for u € (H*(09))3 (s < 2), we have the
decomposition u = u; +u, v, where the tangential component u; = —vA (v Au) €
TH?*(092) and the normal component u, = u-v € H*(0N2). Therefore, we have a
decomposition of space H*(9Q)3 = TH*(0Q) @& H*(0R). For a bounded domain
Q in R3, we denote

THY (09) = {u € H'2(0Q)° | Div(u) € H/*(09)},

HY\ (Q) = {u € H(Q)® | Div(v A ulon) € H'/?(09)},
with norms

||u||2TH1/2 (59) = HUH?p/z(aQ)s + HDiV(UHﬁ{l/Z(aQ)a
v

Di
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”UH%]b, @ = ||U||§{1(Q)3 + [[Div(y A u|3Q)H§{1/2(aQ)7
v

where Div is the surface divergence. There are natural inner products making
them Hilbert spaces (see [9]). We also have the Hilbert space

H(VA,Q) ={uec L*(Q)?® |V Auc L3(Q)3}
with norm

||U”H(V/\Q ||U||L2 Q)3 +[VA U||L2 Q)3

In addition, we define the weighted L? space in R3:

13 = {1 € ()« 1112, = [+ ka1 f@)Pde < oo

Admissibility. It can be shown that for f € TH'/?(09) and g € TH~/?(8D),
the boundary value problem of Maxwell’s equations

VAE =iwuH, VAH = —iwyE in Q\ D,
I//\E‘QQ =f (1.4)
vAHlsp =g,

has a unique solution (E, H) € H(VA,Q\D)x H(VA,Q\D), except for a discrete
set of magnetic resonance frequencies {wy,}. A proof for Dirichlet problem can be
found in [9]. Moreover, we have the continuous dependency of the H(VA)-norm
of the solution on the boundary condition

1Elzwao\n) < CUFa260) + 190 m-1/200)); (15)

IH[ g wao\p) < CUflla2@0) + 119l m-1720py3)- '
At the same time, a similar proof as in [6] shows that the BVP (1.4) is well
posed for f € THl/2 ,(09)), and g € THI/2 ,(0D)), i.e., except for the resonance

frequencies there ex1sts a unique solution (E H) € HllDiv(Q \ D) x Hlljiv(Q \ D)
s.t.,

Bl @) S OO sz ooy + Wl o),
¥lp, @0 < CUS e o+ HgIITHBz on)
Let (Eg,Hp) denotes the solution without the obstacle.
With well-posedness of the direct problem, the impedance map
Ap(v ANEl|gq) = v A H|aq,

where v is the unit outer normal on 99, is bounded from T H'Y2(0Q) to TH~1/2(99Q)
([9]). Moreover, it is an isomorphism from T'Hp, 1/ > (89) to THY) 1/ > (09), see [6].
The reconstruction of the obstacle will use the CGO solution constructed in [5].

CGO-solution In [5], the Maxwell’s equation was reduced to an 8 x 8 second
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order Schrodinger vector equation by introducing the generalized Sommerfeld po-
tential. A vector CGO-solution (Sommerfeld potential) was constructed for the
Schrodinger equation, and the proof of the uniqueness is facilitated compared
to [6]. Same technique also appears in dealing with the inverse boundary value
problems for Maxwell’s equations with partial data [2]. The construction is in
R3.
Define the scalar fields ® and ¥ as

i i

®=—-V-(pE), ¥V=-V-(H).
w w

Under some assumptions on Phi and Psi, we have Maxwell’s equation is equiv-
alent to

1 1 1 1
V/\E—V(W)—iwquO, V/\H+V<¢>+iw’yE:0.
v \m poo\
Moreover, in this case, ® and ¥ vanish. Let X = (¢, e, h,¢)T € (D')® with
e= 73/2E, h= ,u(l)/QH,

1 1
Yotg Yo Ho
Then X satisfies
(P(iV) —k+ V)X =0, inQ (1.6)

where

V.0
P(iV) =

V= (k—r)lg+ D| D™,

o
<
oo o o <o o

0
\Y
0
0
0o Vv 0
\Y%
0
0

. 2 2 1/2 1/2
D = diag(u/ %, 9 13, 119 " 13,70"%)s & = wlropo) %, k= wleeue)/?.

A desirable property of this operator is
(P(iV) =k +V)(P(iV) +k-VT) = (A +k*)1s + Q,
where
Q=VP@iV)-PivV)V' + k(v +VT) —vVT

is a zeroth-order matrix multiplier. Based on this, by writing an ansatz for X,
we define the generalized Sommerfeld potential Y

X = (P(iV)+k -V,
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So it satisfies the Schrodinger equation
(A - K2+ Q)Y =0. (1.7)

The following CGO-solution is due to the Faddeev’s Kernel. Let ¢ € C3 be a
vector with ¢ - ¢ = k2. Suppose Yo € C8 is a constant vector with respect to
and bounded with respect to ¢, there exist a unique solution of (1.7) of the form

Ye(2) = e (yoc — ve(x)),
where ve(z) € (L3, )%, and
locllzz, ,ys < C/IC]
for § € (—1,0). Moreover, one can show that v¢ € H*(Q)® for 0 < s < 2, e.g., see
[1], and
lvg (@) s es < CI¢I* (1.8)
Lemma 3.1 in [5] states that if we choose yo ¢ such that the first and the last
components of (P(¢) — k)yo ¢ vanish, then for large |¢|, X provides the solution
of the original Maxwell’s equation.
Let’s examine this X more closely by giving specific choices of vectors.
Xe =" [(P(=C) + k) yoc + (P(=CQ)ve + P(iV)ve — Vo e + kve — V7Toe)]
(1.9)
As in [5], we choose
1
yO,C = m(g " a, kCL, kbyc : b)T)
where
C=—itp+ V72 +k2pt,
with p, pt € S? and p-pt = 0. 7 > 0 is used to control the size of |¢| = v/272 + k2.
Taking 7 — oo, we have
¢ 1 L
== (=ip+p).
<] V2

Choosing a and b such that

e.g., when n > 3, let

alpalpt; b=

The choice of y ¢ is such that

0
L | —(C-a)¢—kCAD+ K2
zo,c == (P(=C) + k)yoc = 7 k(g/\C;)C_ B .<b;\g :k%a
0



It’s easy to see that
n=(zoc)2 — —kCAD (~O(1)),
0= (1‘0703 ~ O(T)

as 7 — oo. Then X is written in the form

X¢ = et @IV (4 -t re(2))

where
r¢ = P(—Q)ve + P(iV)ve — Vg e + kve — Ve
satisfying for C' > 0 independent of (.
HrCHLg(Q)?’ <C.
Hence the CGO solution of the Maxwell’s equation is given by
By = 5 V2eren) VP a0t (4 p)
Hy = py em@o+ivriiiapt (g 4 Q)

where n = O(1), = O(1), R,Q € L%(R3) are bounded for 7> 1.

1.2. Main result. Adding a parameter t in the weight, we use the CGO solution

Eg = ¢, /2em(@p-t+ivVr et () 4 R)

Hy = g Per@e-t+ivVrikeot (g 4 Q) (110

to define an indicator function and a support function
Definition 1. Define
Ip(’]’,t) = / (V A Eo) . ((AD — A@)(V A Eo) A V) ds
o0

to be the indicator function

Definition 2. Define the support function of the convex hull of D

hp(p) :=supx-p
€D

for a fixed p € S2.
Now we are ready to state our main result.

Theorem 1.1. We assume that the set {x € R3 | z-p = hp(p)} N ID consists
of one point and the Gaussian curvature of 0D is not vanishing at that point.
Then, we can recover hp(p) by

hp(p) =inf{t € R| lim I,(7,t) = 0}.

Moreover, if D is strictly convex, then we can reconstruct D.
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Remark 1. The proof of Theorem 1.1 mainly consists of showing the following

limits:
lim I,(7,t) =0, when t> hp(p); (1.11)
liminf I,(7, hp(p)) = C > 0; (1.12)

Remark 2. A surface is said to be strictly convex if its Gaussian curvature is
everywhere positive. Therefore, if the obstacle D is strictly convex, then Theorem
1.1 provides a reconstruction scheme of the shape of D.

1.3. A key integral equality.

Lemma 1.2. Assume (E,H) is a solution of (1.1) or (1.3) satisfying the bound-
ary condition
v A H|3D =0 and vA E|aQ =VvA E0|3Q.

We have

iw/ (V/\E0)~|:(I//\H—V/\H0)/\I/]ds

o0

:/ _,U/al’V/\E—V/\E()‘Z—w280’E—E0‘2d$
o\D

+/ 1oV A Eo? — wleo|Eo|*da. (1.13)
D

Proof: Denote

I::iw/ (VAEO)-[(V/\HV/\Ho)/\y]dS:iw/ (v ANEp) - (H—Hy)dS.
o0 o0

First by integration by parts, we have

/ g (VAE)- (VAE =V AE)) —wsE - (E - Eg)dr
A\D

_ _</69_/8D> (WA g (V AE)) - (BE—Eo)dS = 0

by the boundary conditions. Adding this to the following equality

I = / (V N Eo) . (—’in + ’ino)dS
o0
- / 45 (V AEo) - (VAE) + w?e0Eo - Eda
o\D

+/MOIIV/\E0|2—w2so|Eo|2d:c+/ (v NEg) - (—iwH)dS
Q2 oD

with the last term vanishing due to the zero-boundary condition on the interface,

/ (v AEy) - (CiwE)dS = | (v A Bo) - (—iw( AH) A)dS =0,
oD oD 6



we obtain (1.13). W

Remark 3. Providing zero tangential electric field instead of magnetic field on
the interface
(v AE)|op =0,
we have a similar identity
—I :/ ugl|V/\E—V/\E0|2—w250|E—E0|2d33—|—/ 115 |V AE|? —w?eo|Eo|*dz.
Q\D D
(1.14)

1.4. Proof of the main theorem. First, we show (1.11) by propose an upper
bound of the indicator function. Let E = E — Eg be the reflect solution in Q\ D.
It satisfies

VA(uy'VAE) —w?E =0 in Q\D,

v AElpq =0, (1.15)

vA (g "V AE)|op = —v AHolgp € TH-'/2(8D).

The well-posedness of this boundary value problem shows
IEl zrevnonpy < Cllv AHolopllg-12pys < ClIEolli(wa,p);

where we denote the general constant C' > 0. The second inequality is because
forve H(VA, D),

/(V/\Hg)~vd93 = /HO-V/\erV/\Hg-vd:c
oD D

= / é,u_l(v NEp) - (V Av) +iweoEg - vdz.
D
Notice that
IHoll(va,p) < CllEollzva,p) < CUIE 2 pys +[Holl 12 py2) < CliHoll (v a,p)-
Therefore, (1.13) implies
1p(7,8) < CUBoll oy + Hol 2 ). (1.16)
Plug in the CGO-solution (1.10), we obtain the following estimates:
HE0H§12(D)3 < CeQT(hD(P)—t)HT’ + RH%P(D)?’ ~ e2Thp(P) =) 1,
o3, )2 < CX 0016+ Q17,0 ~ 722700 751,

Therefore, we obtain
I,(1,t) < Cre*m(hn(p)=1)

for 7 large enough, proving the first limit (1.11).

To show the second limit (1.12), it suffices to show the following two lemmas.
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Lemma 1.3. Ift = hp(p) in CGO-solution (1.10), then

liminf/ |V AEo|2dz = C,
D

T—00

with some constant C' > 0.
Lemma 1.4. Ift = hp(p), then there exists a positive number ¢ such that

w22 (Jop |E — Eol?dz + [}, [Eo|de)
1ot [ |V A Eo|2dz

<c<1,

for T large enough.

Proof of Lemma 1.3: This is the same proof as in the conductivity case by
noticing the left hand side integral

/ IV A Eo|?dz > c||Ho||iQ( s > c/ 2e2r(@p=hn () qy
D
Proof of Lemma 1.4: The proof here is essentially the same as for the
Helmholtz equation. It suffices to show
w2eg fQ\D |E — Eo|?dx = fQ\D |E — Eo|?dx B

lim = lim
=00 gt [HIVAEgde oo o [ [Holda

So we estimate the numerator. Consider the BVP

VAp=iwmgq, VAq= —zwz—:op—fE in Q\ D,

plaa =0, (1.17)

glop = 0.
Skokoskoskoskok skokoskoskskok
H?(Q\ D)?
Assume we propose a proper zero boundary condition for this BVP such that it
is well-posed for E € H(VA,Q\ D), i.e., there exists p € H*(Q\ D)S, s.t

or ¥ A qlspp = 07 which boundary conditions can guarantee p €

Hp||H2(Q\D)3 < CHE”L2(Q\D)3'
By the Sobolev embedding, we have

p(z) — p(y)| < Clz — y|'/?||E

‘EHL2(Q\D)3 for z,y € Q\ D,

sup [p(2)] < ClIE 0 py
zeQ\D

Notice that
VA (g 'V Ap) — wieogp = E.
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Then, integration by parts shows

/ Ef2dx = / E- (VA (uy'V Ap) — w’eop)de
o\D D
= / o' (VAE) - (V Ap) —w?eE - pdz
o\D

(/ag /;)D) (v A (ng 'V A p))dsS

= V/\(,u(le/\}NE)-p—wQs:o}NE'pd:z:
D

—(/m—/aD)uA(uglV/\E)-pdS

= —/ v A (g 'V A Eyg) - pdS.
oD

Denote by zq the point in {x € 9D |z - p = hp(p)}. We have

”E” 2 (p(l‘g) p(ﬂ?)) A (Mal V- A EO)dS “280}3(330) - Eodz
LA(@\D)” oD
C’{/ | O|1/2|y/\ Hy|dS / | 30|d$} ||E||L2 (©\D)?

C / B P 1/2€T($~p—hD(ﬂ))dS+/ eT(@p=hp(p)) da:} E
{[ o=l [ Bl 200

IN

IN

This yields

2 2
/ |E|2dl’ <072 (/ |z — x0’1/287(m-phD(P))dS> + </ e‘r(x-phD(P))dx> .
Q\D N oD D

Then follow the step in Helmholtz case to show

T—00

lim 7'/ |z — xoll/zeT(”p*hD(p))dS =0,
oD
where the assumption of the Gaussian curvature is required.
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